Search results for "Osmotic pressure"

showing 10 items of 63 documents

The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphopr…

2016

Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of pho…

0106 biological sciences0301 basic medicineMAPK/ERK pathwayLichensPhysiologyMAP Kinase Signaling SystemMembrane lipidsPlant ScienceBiology01 natural sciencesDesiccation toleranceDephosphorylation03 medical and health scienceschemistry.chemical_compoundMembrane LipidsChlorophytaOsmotic PressureMicroalgaePhospholipase DPhosphorylationProtein kinase ADehydrationPhospholipase DKinaseCell BiologyGeneral MedicinePhosphatidic acidPhosphoproteinsAdaptation Physiological030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlantcell physiology
researchProduct

Stress integrated tests and cytological analyses reveal Brassica villosa subsp. drepanensis seed quality decrease upon long-term storage

2016

Under stress integrated germination test (SIGT), seeds undergo osmo-saline stresses, which enable to detect differences in vigour of long-term stored seeds with high germination percentage (G%). The quality of Brassica villosa subsp. drepanensis seeds stored in a genebank (at -20°C for 16 years) was compared with seeds at harvest by standard germination tests (GT), SIGT and cytogenetic analysis. No differences were detected in G% and mean germination time under GT. Conversely, SIGT performed with NaCl -0.9MPa osmotic potential did not influence G% at harvest but reduced that of stored seeds, SIGT at -1.4MPa reduced G% of both. Cytogenetic analysis showed reduction of mitotic index, appearan…

0106 biological sciences0301 basic medicineMitotic indexPlant ScienceBiologygenebankBrassica villosa subsp. drepanensis genebank genotoxicity germination seed storage stress integrated germination test01 natural sciencesBrassica villosa subsp. drepanensis; genebank; genotoxicity; germination; seed storage; stress integrated germination testSettore BIO/01 - Botanica Generale03 medical and health sciencesBrassica villosa subsp. drepanensisOsmotic pressureEcology Evolution Behavior and SystematicsBrassica villosa subsp. drepanensisstress integrated germination testgenotoxicityfood and beveragesseed storageHorticultureBrassica villosa030104 developmental biologyAgronomygerminationGermination010606 plant biology & botany
researchProduct

Involvement of osmotic cell shrinkage on the proton extrusion rate in Saccharomyces cerevisiae

2001

Saccharomyces cerevisiae has been subjected to hyperosmotic shocks by using permeating (sorbitol, xylitol, glycerol, NaCl) and nonpermeating (PEG 600) solutes. The proton extrusion rate decreased as the osmotic pressure increased, whichever solute was used. However, the total inhibition of the cellular H+ extrusion depended on the solute used. A total inhibition was observed at about 20 MPa with glycerol, xylitol and sorbitol. With PEG 600, a total inhibition of extracellular acidification was obtained at 8.5 MPa. NaCl, with an extracellular pressure of 37.8 MPa (near saturation), did not completely inhibit the extracellular acidification. These results showed that the total inhibition of p…

0106 biological sciencesOsmotic shockPRESSION OSMOTIQUESaccharomyces cerevisiaeXylitol01 natural sciencesMicrobiologyPermeability03 medical and health scienceschemistry.chemical_compoundOsmotic Pressure010608 biotechnologyGlycerolExtracellularOsmotic pressure[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesChromatographyOsmotic concentrationCell MembraneOsmolar ConcentrationGeneral MedicineCulture Media[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryOsmoregulationSorbitolProtonsFood Science
researchProduct

Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes

2019

Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylati…

0301 basic medicineCancer ResearchSaccharomyces cerevisiae Proteinschip-on-chipSaccharomyces cerevisiaeEpigenesis GeneticHistones03 medical and health sciencesHistone H30302 clinical medicineOsmotic PressureGene Expression Regulation FungalGene expressionEpigeneticsHistone H3 acetylationMolecular BiologyHistone AcetyltransferasesRegulation of gene expressionMediator ComplexbiologyepigeneticsAcetylationCell biologyChromatinDNA-Binding ProteinsHistone Code030104 developmental biologyHistoneHistone acetylationAcetylation030220 oncology & carcinogenesisbiology.proteinchromatinhog1osmotic stressMitogen-Activated Protein Kinasesgene regulationProtein Processing Post-TranslationalTranscription FactorsResearch Paper
researchProduct

Ursolic acid enhances stress resistance, reduces ROS accumulation and prolongs life span in C. elegans serotonin-deficient mutants.

2021

Introduction: Depression and anxiety disorders contribute to the global disease burden. Ursolic acid (UA), a natural compound present in many vegetables, fruits and medicinal plants, was tested in vivo for its effect on (1) enhancing resistance to stress and (2) its effect on life span. Methods: The compound was tested for its antioxidant activity in C. elegans. Stress resistance was tested in the heat and osmotic stress assay. Additionally, the influence on normal life span was examined. RT-PCR was used to assess possible serotonin targets. Results: UA prolonged the life span of C. elegans. Additionally, UA significantly lowered reactive oxygen species (ROS). Molecular docking studies, PCR…

0301 basic medicineModels MolecularSerotoninAntioxidantHot TemperatureOsmotic shockmedicine.medical_treatmentLongevityPharmacologyAntioxidants03 medical and health scienceschemistry.chemical_compound0302 clinical medicineUrsolic acidIn vivoOsmotic PressureStress PhysiologicalmedicineAnimalsReceptorCaenorhabditis elegans5-HT receptorchemistry.chemical_classificationReactive oxygen speciesDepressionGeneral MedicineTriterpenesMolecular Docking SimulationDisease Models Animal030104 developmental biologychemistryReceptors SerotoninMutationSerotoninReactive Oxygen Species030217 neurology & neurosurgeryFood ScienceNaphthoquinonesFoodfunction
researchProduct

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

2016

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 …

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription FactorsThe Biochemical journal
researchProduct

The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at pr…

2015

The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression c…

0301 basic medicineTBX1Saccharomyces cerevisiae ProteinsTranscription GeneticBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistry03 medical and health sciencesOsmotic PressureStructural BiologyTranscription (biology)Gene Expression Regulation FungalGene expressionGeneticsRNA MessengerMolecular BiologyTranscription factorTranscription Initiation GeneticbiologyActivator (genetics)Nuclear ProteinsPromoterMolecular biology030104 developmental biologyRNA Cap-Binding Proteinsbiology.proteinMitogen-Activated Protein KinasesCREB1Transcription FactorsBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Hypertonic Stress and Amino Acid Deprivation Both Increase Expression of mRNA for Amino Acid Transport System A

2004

The activity of amino acid transport system A ([Oxender and Christensen, 1963][1]) is regulated in a variety of different ways, the best studied being the increases of its activity caused by starving cells of amino acids or by exposing them to hypertonicity (for review see [McGivan and Pastor-

Amino Acid Transport System APhysiologyCHO CellsBiologyCricetulusOsmotic PressureCricetinaeAnimalsHumansOsmotic pressureRNA MessengerAmino AcidsLetter to the Editorchemistry.chemical_classificationRegulation of gene expressionMessenger RNAChinese hamster ovary cellbiology.organism_classificationAmino acidGene Expression RegulationHypotonic SolutionschemistryBiochemistryHypertonic StressTonicityCricetulusJournal of General Physiology
researchProduct

Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resist…

2007

In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of int…

Antifungal AgentsHot TemperatureMutantGlutathione reductaseHyphaemedicine.disease_causeMicrobiologyMicrobiologySuperoxide dismutasechemistry.chemical_compoundMiceOsmotic PressureCandida albicansmedicineMorphogenesisAnimalsTrehalaseTrehalaseCandida albicansMicrobial ViabilitybiologyVirulenceSuperoxide DismutaseCandidiasisTrehaloseHydrogen Peroxidemedicine.diseasebiology.organism_classificationCatalaseTrehaloseSurvival AnalysisDisease Models AnimalOxidative StressGlutathione Reductasechemistrybiology.proteinFemaleSystemic candidiasisOxidative stressGene DeletionMicrobiology (Reading, England)
researchProduct

Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.

2009

Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmotic stress in wild-type and hog1 mutant cells. Mild osmotic shock induces a broad mRNA destabilization; however, osmo-mRNAs are up-regulated by increasing both transcription rates and mRNA half-lives. In contrast, mild or severe osmotic stress in hog1 mutants, or severe osmotic stress in wild-type cel…

BioquímicaMessenger RNASaccharomyces cerevisiae ProteinsTranscription GeneticOsmotic shockMRNA destabilizationRNA Stabilityp38 mitogen-activated protein kinasesSaccharomyces cerevisiaeMRNA stabilizationSaccharomyces cerevisiaeBiologybiology.organism_classificationMolecular biologyArticleGenètica molecularCell biologyOsmotic PressureGene Expression Regulation FungalGene expressionOsmotic pressureRNA MessengerMitogen-Activated Protein KinasesMolecular Biology
researchProduct